

C16-EE/CHPP-102

6035

BOARD DIPLOMA EXAMINATION, (C-16) SEPTEMBER/OCTOBER - 2020 DEEE—FIRST YEAR EXAMINATION

ENGINEERING MATHEMATICS-I

Time: 3 hours | Total Marks: 80

PART-A

3×10=30

Instructions: (1) Answer all questions.

(2) Each question carries three marks.

Resolve
$$\frac{1}{(x+3)(x+1)}$$
 into partial fractions.

2. If
$$A = \begin{bmatrix} 3 & 2 & -1 \\ 1 & 5 & 4 \\ 2 & 3 & 7 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix}$, find $4A - 2B$.

3. Using Laplace expansion, evaluate the determinant

$$\begin{vmatrix} 0 & q & -r \\ -q & 0 & p \\ r & -p & 0 \end{vmatrix}$$

4. Show that $\frac{\cos 37^{\circ} + \sin 37^{\circ}}{\cos 37^{\circ} - \sin 37^{\circ}} = \cot 8^{\circ}$.

/6035

1

Contd...

- **8.** Show that $\cos^4 A = \sin^4 A = \cos 2A$
- Find the conjugate of the complex number (3 + 4i)(2 3i).
- 7. Find the perpendicular distance from the point (3, 2) to the line 4x + 5y + 6 = 0
- 8. Find the equation of the line passing through the points $(2, 4)\{-2, 3\}.$
- 9. Evaluate:

$$\lim_{x \to 0} \frac{\sin 3x}{\sin 5x}$$

10. Differentiate sin(cos x) w.r.t. x

PART—B

10×5=50

Instructions: (1) Answer any five questions.

- (2) Each question carries ten marks.

Solve the equation by Cramer's method x + y + z = 9; 2x + 5y + 7z = 52; 2x + y - z = 0.

- Prove that $\cos 70^{\circ} + \cos 50^{\circ} \cos 10^{\circ} = 0$.
 - (b) Show that

$$\tan^{-1}\left(\frac{2}{3}\right) + \tan^{-1}\left(\frac{3}{4}\right) = \tan^{-1}\left(\frac{17}{6}\right)$$

/6035

| Contd...

13. (a) Solve : cos 5θ + cos θ = cos 3θ

(b) In any triangle ABC, show that

$$\sum \{b+c\}\cos A - a+b+c$$

- 14. (a) Find the equation of the circle passing through the points (0, 0), (6, 0) and (8, 4).
 - (b) Find the equation of the ellipse whose focus (-1, 1) and directrix is x-y+3=0 and eccentricity is 1/2.

15 Differentiate $x^{\tan x}$ w.r.t. X.

(b) Find
$$\frac{dy}{dx}$$
, if $x^2 + y^2 - 2axy = 1$.

46. (a) Find $\frac{dy}{dx}$, if $x = 4t^2$ and y = 8t.

- (b) Differentiate $tan^{-1}\left(\frac{2x}{1-x^2}\right)$ w.r.t. $sin^{-1}\left(\frac{2x}{1+x^2}\right)$.
- 17. (a) Find the equation of tangent and normal to the curve $y = x^2 3x + 5$ at the point (2, 3).
 - (b) A circular metal plate expands by heat, so that its radius increases at the rate of 0.02 cm/sec. At what rate its area is increasing, when the radius is 20 cm.
- 18. (a) The sum of two numbers is 20. Find the numbers, so that the sum of their squares is a minimum.
 - (b) The circumference of a circle is measured as 28 cm with an error of 0.04 cm. Find the approximate percentage error in the area of the circle.

* * *

/6035