C16-EE-106

5037

BOARD DIPLOMA EXAMINATION, (C-16)

MARCH / APRIL - 2019

DEEE - FIRST YEAR EXAMINATION BASIC ELECTRICAL ENGINEERING

Time: 3 Hours]

[Total Marks: 80

PART - A

2×15=30

Instructions:

- (1) Answer any 15 questions.
- Each question carries 2 marks.
- (3) Answer should be brief and straight to the point and shall not exceed five simple sentences.
- State ohm's law.
- Define specific resistance and write its unit.
- Define temperature coefficient of resistance.
- Draw and write down an expression for equivalent resistance when three resistors are connected in parallel.
- Write the symbols and units of electrical work, electrical power.
- Calculate the input of an electric motor when the output of the motor is 10 H.P. and efficiency is 90%.
- Write down the expression for joule's law of electric heating and expand the terms.
- Define thermal efficiency. 8
 - State Right Hand Thumb rule.
 - Write down expressions for field strength (a) At the centre of a circular conductor (b) At any point on the axis of a circular conductor.

5037

[Contd...

http://www.sbtetonline.com

http://www.sbtetonline.com

Define magnetic flux and reluctance.

- Define magnetic leakage coefficient. 12
- State Faraday's first law of electro magnetic induction. 13
- Define self inductance. 14
- State Fleming's Right Hand rule. 15
- Write down expression for lifting power of a magnet and expand the terms.
- State coulomb's first law of electro statics. 17
- Define relative permittivity. 18
- Plot electrostatic field around an isolated positive charge and isolated negative charge.
- Write down the formula for capacitance of a capacitor explaining each term and mention its unit. http://www.sbtetonline.com

PART - B

10×5=50

http://www.sbtetonline.com

Instructions:

- (1) Answer any FIVE questions.
- (2) Each question carries TEN marks.
- (3) Answer should be comprehensive and criterion for valuation is the content but not the length of and answer.
- Distinguish between conductor, insulator and semi 21 conductor with respect to valence electrons. 6
 - Two resistances of 50 Ω and 10 Ω are connected in parallel and the combination draws a current of 20 A from the supply. Determine the current in each branch and supply voltage.
- 22 A coil of copper wire has a resistance of 70Ω at $20^{\circ}\mathrm{C}$ and is connected to a 230 V supply. By how much the voltage be increased in order to maintain the current constant if the temperature of the coil rises to 60°C. Take the temperature coefficient of resistance of copper as 0.00428 at 0°C.

5037]

[Contd...

- A house has the following load:
 - 10 lamps of 60 W each working for 10 hrs a day.
 - 1 electric iron of 450 W working for 1 hr a day.
 - 8 fans of 80 W each working for 12 hrs a day.
 - 1 heater of 1000 W working for 1 hr a day.
 - 1 refrigerator of 250 W working for 12 hrs a day. Calculate the monthly bill if rate of charge per unit is Rs. 1.20 plus Rs. 20/- as meter rent for the month of March.
- Calculate the time taken and the cost of energy used to raise the temperature of one litre of water from 15°C to 90°C in a 250 V electric kettle . Resistance of kettle is $100\,\Omega_{\odot}$ Efficiency of kettle is 85%, cost of electrical energy is 75 paise per unit.
- Derive an expression for the force between two long and straight parailel current carrying conductors.

(b) Define ampere.

Develop an expression for energy stored in a magnetic field.

- The combined inductance of two coils connected in series is 0.6 H and 0.1 H, depending on the relative directions of the currents in the coils. If one of the coils when isolated has a self inductance of 0.2 H, Calculate the (a) mutual inductance (b) coupling coefficient
- Three capacitors of 2 μF , 4 μF and 6 μF are connected in series across a 220 V d.c. supply . Find (a) the total capacitance (b) charge on each capacitor (c) potential drop across each capacitor.

http://www.sbtetonline.com

Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्य,

Paytm or Google Pay 🕏

http://www.sbtetonline.com