6236

BOARD DIPLOMA EXAMINATION

IUNE - 2019

DIPLOMA IN ELECTRONICS AND COMMUNICATION ENGINEERING NETWORK ANALYSIS THIRD SEMESTER EXAMINATION

Time: 3 Hours Total Marks: 80

PART - A $(3m \times 10 = 30m)$

Note 1:Answer all questions and each question carries 3 marks

2:Answers should be brief and straight to the point and shall not exceed 5 simple sentences

1. Convert the following current source into the equivalent voltage

source.

- 2. What are the limitations of Ohm's law?
- 3. Name the dual of the following:
 - a) Voltage source b)Open circuit c) Node
- 4. Write mesh current equations for the network shown below.

- 5. What are the advantages of Norton's theorem?
- 6. What are the limitations of Reciprocity theorem?
- 7. Find Laplace Transform of [u(t-a) cos (t-a)] using Second shifting property.
- 8. Write the Inverse Laplace Transforms of the given functions

i)
$$\frac{s+a}{(s+a)^2+\omega^2}$$
 ii) $\frac{s+a}{(s+a)^2-b^2}$ iii) $\frac{1}{(s+a)^2}$

Write the expressions for attenuation in Decibels in terms of Voltage, Current and Power 10. Draw Constant – K Low Pass T and π type Filters.

PART - B
$$(10m \times 5 = 50m)$$

Note 1:Answer any five questions and each carries 10 marks

- 2:The answers should be comprehensive and the criteria for valuation is the content but not the length of the answer
- 11. For the following circuit, determine the voltages
 - i) V_{df} and ii) V_{ag}

12. Determine the power absorbed by 5Ω resistor in the circuit shown below by using mesh analysis.

13. a) Explain duality of a network.

- (5)
- b) Draw the dual circuit of the following circuit . (5)

14. Using superposition theorem, find the current through the 120Ω resistor shown in figure.

15. Find the voltage across AB using Norton's theorem

- 16. A series RC Circuit with R= 5000Ω and C= $20\mu F$ has a constant voltage V=100V applied at t= 0 and the capacitor has no initial charge. Find the equations for $V_R(t)$, i(t) and $V_C(t)$
- 17. a) Draw and Explain the S-Domain circuit model for a Resistor (5)
 - b) Draw and Explain the S-Domain circuit model for an Inductor (5)
- 18. Define the following filters and draw their ideal characteristics.
 - (i) Low Pass filter ii) High Pass filter iii) Band Pass filter iv) Band Stop Filter

